
SESSION // 01
INTRODUCTION TO PYTORCH

FACULTY OF
SCIENCE AND ENGINEERING
+++

Diego Corona Lopez – AI Technical Specialist

AGENDA

• PyTorch fundamentals and advantages

• Working with tensors

• Tensor operations and manipulation

• Automatic differentiation (Autograd)

• Moving from data to tensors

• GPU acceleration

PRESENTATION TITLE 02

INTRODUCTION

SE01 03

Deep Learning is a subset of machine learning where models — typically neural networks —

learn directly from data. Inspired by the structure and function of the human brain. Just like

humans learn to recognize cats by seeing many pictures of cats, deep learning models learn

patterns from data — not rules programmed by hand.

DEEP LEARNING

SE01 04

PYTORCH

• Dynamic Computation Graph: Easier

debugging and flexible model building

• Pythonic and Intuitive API: Seamless

integration with Python libraries

• Strong Research and Industry Adoption:

Used by major companies and researchers

• Excellent GPU Acceleration: Optimised for

performance on GPUs and TPUs

SE01 05

WHY PYTORCH
Feature PyTorch TensorFlow Keras

Ease of Use
High (Pythonic, dynamic

computation graph)

Moderate (Static graph by default,

more setup)
Very High (High-level API)

Flexibility High Moderate Low (abstracted API)

Performance High
Very High (Optimized for

deployment)
Moderate

Debugging Easy (Eager execution) Harder (Graph-based execution) Easy

GPU Support Excellent Excellent Good

Industry Use Research, Prototyping Production, Deployment Rapid Prototyping

SE01 06

TENSORS
Definition: A generalization of vectors and

matrices to higher dimensions

Why Tensors?

Efficient representation of multi-dimensional data

Optimized for computation (CPU & GPU)

SE01 07

SE01 08

Basic Tensor Creation Methods

• torch.tensor() - from existing data

• torch.zeros(), torch.ones() - filled tensors

• torch.rand(), torch.randn() - random tensors

• torch.arange(), torch.linspace() - sequences

• torch.eye() - identity matrices

Data types can be specified with dtype

parameter

CREATING
TENSORS

SE01 09

• Working with Tensor Attributes

• Shape: tensor.shape

• Data type: tensor.dtype

• Device: tensor.device

• Accessing values: tensor.item() for scalars

• Converting types: tensor.float(), tensor.int()

TENSOR
PROPERTIES

SE01 10

Accessing Tensor Data

• Basic indexing: tensor[i, j]

• Slicing: tensor[1:3]

Advanced indexing techniques:

• Boolean masks: tensor[tensor > 0]

• Negative indexing: tensor[-1] (last element)

• Using ellipsis: tensor[..., 0]

TENSOR
INDEXING

SE01 11

Common Operations

• Arithmetic: +, -, *, /

• Element-wise operations: torch.sqrt(),

torch.pow()

• Reduction: torch.sum(), torch.mean()

• Comparisons: >, <, ==

• In-place operations: tensor.add_(1) (note

the underscore)

BASIC TENSOR
OPERATIONS

SE01 12

Linear Algebra with PyTorch

• Matrix multiplication: @ or

torch.matmul()

• Transposition: .T or torch.transpose()

• Inverse: torch.inverse()

• Determinant: torch.det()

• Eigenvalues: torch.eig()

• SVD: torch.svd()

MATRIX
OPERATIONS

SE01 13

Working with Different Shapes

• Automatic expansion of smaller tensors

• Rules follow NumPy broadcasting

• Eliminates need for explicit reshaping

Examples:

• Add scalar to matrix

• Multiply matrix by row/column vector

• Scale batches of data

• Powerful but requires understanding

BROADCASTING

SE01 14

Changing Tensor Dimensions

• reshape() - new shape, possibly new memory

• view() - new shape, same memory (must be contiguous)

• squeeze() - remove dimensions of size 1

• unsqueeze() - add dimension of size 1

• expand() - broadcast dimensions without copying

RESHAPING

SE01 15

Computing Gradients

• Enable tracking with requires_grad=True

• Build computation graph through

operations

• Call backward() to compute gradients

• Access gradients via tensor.grad

USING
AUTOGRAD

SE01 16

From Raw Data to Tensors

• Common data sources: CSV, images, text

• Using pandas to load structured data

• Converting to tensors:

• df = pd.read_csv('data.csv')

• tensor = torch.tensor(df.values)

• DataFrames as an intermediate representation

LOADING DATA

SE01 17

Leveraging Hardware

• Check availability: torch.cuda.is_available()

• Select device: device = torch.device('cuda')

• Move tensors to device: tensor = tensor.to(device)

When to use GPU:

• Large tensors/datasets

• Computationally expensive operations

• Deep learning model training

• Keep all tensors on same device for efficiency

USING
THE GPU

BEST PRACTICES
• Match tensor types before operations

• Understand broadcasting rules

• Use in-place operations when appropriate

• Keep track of your tensor devices

• Leverage PyTorch's documentation

• Experiment and debug with small examples first

SE01 18

	Slide 1: Session // 01 INTRODUCTION TO PYTORCH FACULTY OF SCIENCE AND ENGINEERING +++
	Slide 2: Agenda
	Slide 3: Introduction
	Slide 4: Deep learning
	Slide 5: PyTorch
	Slide 6: Why PYTORCH
	Slide 7: Tensors
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: BEST PRACTICES

