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AGENDA

• PyTorch fundamentals and advantages

• Working with tensors

• Tensor operations and manipulation

• Automatic differentiation (Autograd)

• Moving from data to tensors

• GPU acceleration

PRESENTATION TITLE 02



INTRODUCTION
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Deep Learning is a subset of machine learning where models — typically neural networks — 

learn directly from data. Inspired by the structure and function of the human brain. Just like 

humans learn to recognize cats by seeing many pictures of cats, deep learning models learn 

patterns from data — not rules programmed by hand.



DEEP LEARNING
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PYTORCH

• Dynamic Computation Graph: Easier 

debugging and flexible model building

• Pythonic and Intuitive API: Seamless 

integration with Python libraries

• Strong Research and Industry Adoption: 

Used by major companies and researchers

• Excellent GPU Acceleration: Optimised for 

performance on GPUs and TPUs
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WHY PYTORCH
Feature PyTorch TensorFlow Keras

Ease of Use
High (Pythonic, dynamic 

computation graph)

Moderate (Static graph by default, 

more setup)
Very High (High-level API)

Flexibility High Moderate Low (abstracted API)

Performance High
Very High (Optimized for 

deployment)
Moderate

Debugging Easy (Eager execution) Harder (Graph-based execution) Easy

GPU Support Excellent Excellent Good

Industry Use Research, Prototyping Production, Deployment Rapid Prototyping
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TENSORS
Definition: A generalization of vectors and 

matrices to higher dimensions

Why Tensors?

Efficient representation of multi-dimensional data

Optimized for computation (CPU & GPU)
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Basic Tensor Creation Methods

• torch.tensor() - from existing data

• torch.zeros(), torch.ones() - filled tensors

• torch.rand(), torch.randn() - random tensors

• torch.arange(), torch.linspace() - sequences

• torch.eye() - identity matrices

Data types can be specified with dtype 

parameter

CREATING 
TENSORS
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• Working with Tensor Attributes

• Shape: tensor.shape

• Data type: tensor.dtype

• Device: tensor.device

• Accessing values: tensor.item() for scalars

• Converting types: tensor.float(), tensor.int()

TENSOR
PROPERTIES
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Accessing Tensor Data

• Basic indexing: tensor[i, j]

• Slicing: tensor[1:3]

Advanced indexing techniques:

• Boolean masks: tensor[tensor > 0]

• Negative indexing: tensor[-1] (last element)

• Using ellipsis: tensor[..., 0]

TENSOR
INDEXING
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Common Operations

• Arithmetic: +, -, *, /

• Element-wise operations: torch.sqrt(), 

torch.pow()

• Reduction: torch.sum(), torch.mean()

• Comparisons: >, <, ==

• In-place operations: tensor.add_(1) (note 

the underscore)

BASIC TENSOR
OPERATIONS
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Linear Algebra with PyTorch

• Matrix multiplication: @ or 

torch.matmul()

• Transposition: .T or torch.transpose()

• Inverse: torch.inverse()

• Determinant: torch.det()

• Eigenvalues: torch.eig()

• SVD: torch.svd()

MATRIX
OPERATIONS



SE01 13

Working with Different Shapes

• Automatic expansion of smaller tensors

• Rules follow NumPy broadcasting

• Eliminates need for explicit reshaping

Examples:

• Add scalar to matrix

• Multiply matrix by row/column vector

• Scale batches of data

• Powerful but requires understanding

BROADCASTING
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Changing Tensor Dimensions

• reshape() - new shape, possibly new memory

• view() - new shape, same memory (must be contiguous)

• squeeze() - remove dimensions of size 1

• unsqueeze() - add dimension of size 1

• expand() - broadcast dimensions without copying

RESHAPING
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Computing Gradients

• Enable tracking with requires_grad=True

• Build computation graph through 

operations

• Call backward() to compute gradients

• Access gradients via tensor.grad

USING 
AUTOGRAD
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From Raw Data to Tensors

• Common data sources: CSV, images, text

• Using pandas to load structured data

• Converting to tensors:

• df = pd.read_csv('data.csv')

• tensor = torch.tensor(df.values)

• DataFrames as an intermediate representation

LOADING DATA
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Leveraging Hardware

• Check availability: torch.cuda.is_available()

• Select device: device = torch.device('cuda')

• Move tensors to device: tensor = tensor.to(device)

When to use GPU:

• Large tensors/datasets

• Computationally expensive operations

• Deep learning model training

• Keep all tensors on same device for efficiency

USING
THE GPU



BEST PRACTICES
• Match tensor types before operations

• Understand broadcasting rules

• Use in-place operations when appropriate

• Keep track of your tensor devices

• Leverage PyTorch's documentation

• Experiment and debug with small examples first
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