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AGENDA
Introduction to Physics-Informed Neural Networks

Navier-Stokes Equations and Fluid Flow
• Mathematical formulation of Navier-Stokes equations

• Momentum and continuity equations

PINN Architecture and Components

Loss Functions and Physics Constraints
• Computing derivatives via autograd

• First and second order derivatives implementation

• Residual formulation for Navier-Stokes equations

Training Process and Optimization

Results and Visualization
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PINNS
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What are PINNS:

Neural networks that incorporate physical laws into training

Key insight: 

Combine data-driven learning with physics constraints = "Learning while respecting the laws of physics“

Traditional numerical methods limitations:
• Computational cost

• Mesh requirements

• Limited data handling

• Curse of dimensionality

• Limited generalisation



NAVIER-STOKES 
EQUATIONS
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Foundation of fluid dynamics

• Partial differential equations governing fluid motion

• Challenging to solve numerically

𝜕u
𝜕t + λ! u 𝜕u𝜕x+ v

𝜕u
𝜕y = −𝜕p𝜕x+ λ"

𝜕"u
𝜕x"+

𝜕"u
𝜕y" (momentum	in	x−direction)

𝜕𝑣
𝜕𝑡 + λ! 𝑢 𝜕𝑣𝜕𝑥+ 𝑣

𝜕𝑣
𝜕𝑦 = −𝜕𝑝𝜕𝑦+ λ"

𝜕"𝑣
𝜕𝑥"+

𝜕"𝑣
𝜕𝑦" (momentum	in	y−direction)

𝜕𝑢
𝜕𝑥+

𝜕𝑣
𝜕𝑦 = 0

𝑢 𝑥, 𝑦, 𝑡 ∶ horizontal velocity

𝑣 𝑥, 𝑦, 𝑡 ∶ 	vertical	velocity

𝑝 𝑥, 𝑦, 𝑡 ∶ 	pressure

λ! ∶ 	convection	coef<icient	(usually	1)

λ" = ν ∶ 	kinematic	viscosity



WAKE-CYLINDER DATA
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• Domain: [-15, 25] × [-8, 8]

• Reynolds number: 100

• Visualization of the flow simulation

• What we're predicting: λ₁, λ₂, and 

pressure field p
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PINN 
ARCHITECTURE

Loss = Data	Loss + Physics	Loss
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PHYSICS-
CONSTRAINTS
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AUTOGRAD
DIFFERENTIATION

Parameter Purpose Description
`u` Target tensor The output we want to differentiate

`t` Source tensor The variable we're differentiating 
with respect to

`grad_outputs` Scaling factor Usually ones, for direct gradient 
computation

`create_graph` Enable higher derivatives Needed for second derivatives
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Two-phase optimization strategy

• Phase 1: Adam optimizer (warm-up)

• Phase 2: L-BFGS optimizer (fine-tuning)

tolerance_grad
Stops optimization when the maximum element in the gradient 
vector falls below this threshold

• Smaller values → More precise solutions

tolerance_change
Terminates when relative change in function value is below 
threshold

• Prevents wasting computation when progress stalls

history_size
Number of past iterations stored to approximate Hessian matrix

• Larger values → Better curvature information → More 
accurate steps

TRAINING PROCESS
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• With PINNs we have to measure the fit of the data and how well the model satisfies the physical constraints

Loss = Data Loss+ Physics Loss

Data Loss =
1
𝑁
%
𝑖=1

𝑁

𝑢𝑖 − 𝑢pred,𝑖
2
+ 𝑣𝑖 − 𝑣pred,𝑖

2

Physics Loss =
1
𝑀
%
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𝑓𝑢,𝑗2 + 𝑓𝑣,𝑗2 + 𝑓𝑐,𝑗2

•

LOSS FUNCTION



ADVANTAGES AND LIMITATIONS
• Working with limited data (only 1% 

training data)
• No pressure data needed for training
• Physics-consistent prediction

• Computational cost of training
• Handling of boundary conditions
• Scaling to more complex geometries
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