SESSION // 03B PHYSICS INFORMED NEURAL NETWORKS

FACULTY OF SCIENCE AND ENGINEERING +++

Diego Corona Lopez – AI Technical Specialist

AGENDA

Introduction to Physics-Informed Neural Networks

Navier-Stokes Equations and Fluid Flow

- Mathematical formulation of Navier-Stokes equations
- · Momentum and continuity equations

PINN Architecture and Components

Loss Functions and Physics Constraints

- Computing derivatives via autograd
- First and second order derivatives implementation
- Residual formulation for Navier-Stokes equations

Training Process and Optimization

Results and Visualization

What are PINNS:

Neural networks that incorporate physical laws into training

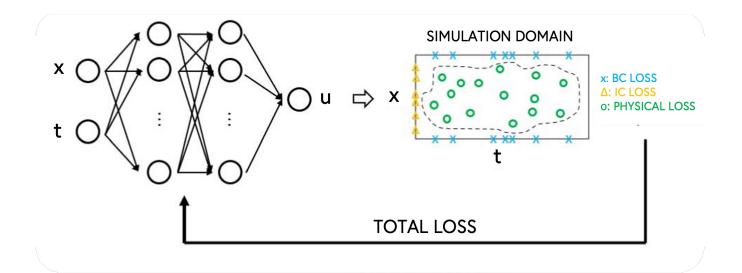
PINNS

Key insight:

Combine data-driven learning with physics constraints = "Learning while respecting the laws of physics"

Traditional numerical methods limitations:

- Computational cost
- Mesh requirements
- · Limited data handling
- Curse of dimensionality
- Limited generalisation



NAVIER-STOKES **EQUATIONS**

Foundation of fluid dynamics

- · Partial differential equations governing fluid motion
- Challenging to solve numerically

$$u(x, y, t)$$
: horizontal velocity

$$v(x, y, t)$$
: vertical velocity

$$p(x, y, t)$$
: pressure

$$\lambda_1$$
: convection coefficient (usually 1)

$$\lambda_2 = \nu$$
: kinematic viscosity

$$\frac{\partial u}{\partial t} + \lambda_1 \left(u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right) = -\frac{\partial p}{\partial x} + \lambda_2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) \quad \text{(momentum in x-direction)}$$

$$\frac{\partial v}{\partial t} + \lambda_1 \left(u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} \right) = -\frac{\partial p}{\partial y} + \lambda_2 \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) \quad \text{(momentum in y-direction)}$$

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

WAKE-CYLINDER DATA

- Domain: [-15, 25] × [-8, 8]
- Reynolds number: 100
- Visualization of the flow simulation
- What we're predicting: λ_1 , λ_2 , and pressure field p

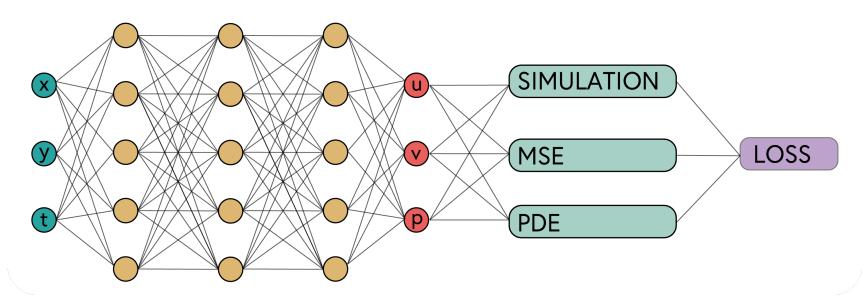
05

PINN ARCHITECTURE

Loss = Data Loss + Physics Loss

Data Loss =
$$\frac{1}{N} \sum_{i=1}^{N} \left(u_i - u_{\text{pred},i} \right)^2 + \left(v_i - v_{\text{pred},i} \right)^2$$

Physics Loss =
$$\frac{1}{M} \sum_{j=1}^{M} (f_{u,j}^2 + f_{v,j}^2 + f_{c,j}^2)$$



PHYSICS-CONSTRAINTS

$$f_{u} = \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + \frac{\partial p}{\partial x} - v \left(\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} \right)$$

$$f_{v} = \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + \frac{\partial p}{\partial y} - v \left(\frac{\partial^{2} v}{\partial x^{2}} + \frac{\partial^{2} v}{\partial y^{2}} \right)$$

$$f_c = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}$$

AUTOGRAD DIFFERENTIATION

Parameter	Purpose	Description
`u`	Target tensor	The output we want to differentiate
`t`	Source tensor	The variable we're differentiating with respect to
`grad_outputs`	Scaling factor	Usually ones, for direct gradient computation
`create_graph`	Enable higher derivatives	Needed for second derivatives

TRAINING PROCESS

```
optimizer = optim.LBFGS(model.parameters(),
                                   lr=0.1,
                                   max_iter=500,
                                   max_eval=500,
                                   tolerance_grad=1e-8,
                                   tolerance_change=1e-8,
                                   history_size=50,
                                   line_search_fn="strong_wolfe")
def closure():
   optimizer.zero grad()
   loss = loss_function(model)
   loss.backward()
   return loss
for epoch in range(num_epochs):
   optimizer.step(closure)
```

Two-phase optimization strategy

- Phase 1: Adam optimizer (warm-up)
- Phase 2: L-BFGS optimizer (fine-tuning)

tolerance_grad

Stops optimization when the maximum element in the gradient vector falls below this threshold

• Smaller values → More precise solutions

tolerance_change

Terminates when relative change in function value is below threshold

• Prevents wasting computation when progress stalls

history_size

Number of past iterations stored to approximate Hessian matrix

• Larger values → Better curvature information → More accurate steps

SE03 0.9

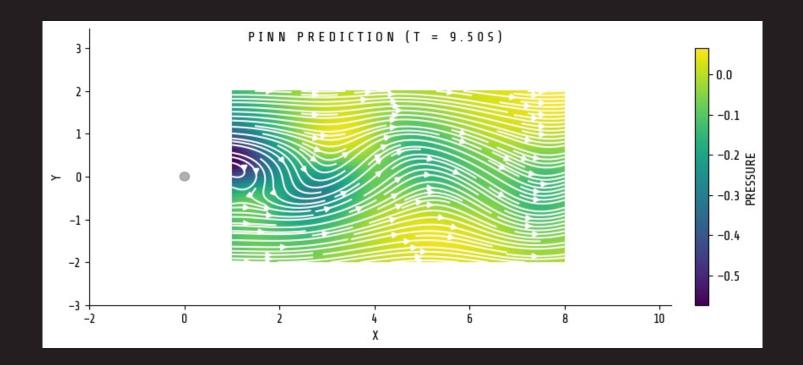
LOSS FUNCTION

• With PINNs we have to measure the fit of the data and how well the model satisfies the physical constraints

$$Loss = Data Loss + Physics Loss$$

Data Loss =
$$\frac{1}{N} \sum_{i=1}^{N} \left(u_i - u_{\text{pred},i} \right)^2 + \left(v_i - v_{\text{pred},i} \right)^2$$

Physics Loss =
$$\frac{1}{M} \sum_{j=1}^{M} (f_{u,j}^2 + f_{v,j}^2 + f_{c,j}^2)$$



ADVANTAGES AND LIMITATIONS

- Working with limited data (only 1% training data)
- No pressure data needed for training
- Physics-consistent prediction SE03

- Computational cost of training
- Handling of boundary conditions
- Scaling to more complex geometries