
SESSION // 03
TRAINING NEURAL NETWORKS

FACULTY OF 
SCIENCE AND ENGINEERING
+++

Diego Corona Lopez – AI Technical Specialist



AGENDA
PyTorch Workflow Overview

Case Study: ARKOMA Robot Dataset

Data Preparation and Model Design

• Preprocessing and normalizing data

• Designing network architecture

Training and Evaluation

• Implementing loss functions and optimizers

• Monitoring model performance

Results Analysis and Visualization

Challenges & Next Steps

PRESENTATION TITLE 02



PYTORCH WORKFLOW

SE03 03



ARKOMA ROBOT DATASET

SE03 04

Critical problem in robotics:

 "How should joints move to place end-effector at desired position?"

Why Inverse Kinematics Matter:

• Forward kinematics: Easy to calculate (joint angles → position)

• Inverse kinematics: Challenging mathematical problem (position → joint angles)

Real-world applications:
• Robot manipulation tasks (grasping objects)

• Manufacturing automation

• Surgical robotics

NAO robot inverse kinematics dataset
• 10,000 input-output pairs

• Inputs: End-effector positions (Px, Py, Pz, Rx, Ry, Rz)

• Outputs: Joint angles (θ1, θ2, θ3, θ4, θ5)

• We'll focus on the right arm



DATA PREPARATION 
AND PRE-PROCESSING

SE03 05

Purpose of each dataset:

• Training (60-80%): 

• Training the model

• Validation (10-20%): 

• Tuning hyperparameters

• Test (10-20%): 

• Final evaluation



SE03 06

Why normalise?

• Faster convergence

• Numerical stability

• Equal feature contribution

• Better generalization

Min-Max scaling:

X!"#$ = X − X$%! / X$&'− X$%!

DATA 
NORMALISATION



SE03 07

Purpose: 

• Transform linear input to non-linear output

• Enable networks to learn complex patterns 
and relationships

Key properties: 

• Differentiable

• Non-linear 

• Computationally efficient

ACTIVATION 
FUNCTIONS



SE03 08

• Input Layer: Receives input features

• Hidden Layers: Process information

• Output Layer: Produces predictions

• Width (neurons per layer) vs Depth (number of 
layers)

BUILDING
NEURAL NETWORKS



SE03 09

Importance of proper initialization:

1. Convergence Speed: Good initialization leads to faster training

2. Symmetry Breaking: Prevents neurons from learning the same 
features

3. Vanishing/Exploding Gradients: Proper scaling helps maintain 
gradient flow

4. Training Stability: Reduces the chance of getting stuck in poor 
local minima

5. Reproducibility: Sets a consistent starting point for 
experiments

WEIGHT INITIALISATION



SE03 10

• PyTorch model implementation for robotic arm

• Simple architecture to avoid overfitting

ANN 
IMPLEMENTATION



SE03 11

Popular optimisers:

• SGD: Simple, works well with momentum

• Adam: Adaptive learning rates, widely used

• RMSProp: Good for recurrent networks

• AdamW: Adam with proper weight decay

Learning rate importance:

• Too large: Causes unstable training, overshooting minima

• Too small: Results in slow convergence or getting stuck in local 
minima

• "Just right": Efficient convergence to good solutions

Learning Rate Strategies:

• Fixed: Simple but rarely optimal for entire training

• Decay/Scheduling: Reduce rate over time (e.g., step, exponential, 
cosine)

• Adaptive: Adjusts automatically based on gradient history

OPTIMISATION



SE03 12

PYTORCH OPTIM



SE03 13

• Loss functions quantify prediction errors

• We use Mean Squared Error (MSE): 

𝑀𝑆𝐸 = 1/𝑛 Σ(𝑦 − ŷ)²

• Provides direction for optimization

LOSS FUNCTION



SE03 14

Types of loss functions:

• MSE: Regression tasks

• MAE: Regression with less sensitivity to outliers

• Binary Cross-Entropy: Binary classification

• Categorical Cross-Entropy: Multi-class 
classification

• For our regression task: Mean Squared Error

LOSS 
FUNCTIONS



SE03 15

• Underfitting: Model too simple, high bias

• Overfitting: Model too complex, high variance

• Finding the right balance

OVERFITTING AND 
UNDERFITTING



SE03 16

Testing on unseen data

Metrics for regression:
• Mean Squared Error

• R-squared score

MODEL 
EVALUATION



SE03 17

MODEL EVALUATION



IMPROVING THE MODEL
• Hyperparameter tuning
• Deeper/wider networks

• Regularisation techniques
• Advanced architectures

SE03 18


