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AGENDA

Introduction to Convolutional Neural Networks (CNNs)

* Understanding what makes CNNs unique for image processing

The Convolution Operation

« Mathematical foundations of convolution

» Key parameters: kernel size, stride, padding, dilation

Filters in CNNs

* Understanding what filters detect in images

» Different types of filters for edge detection, sharpening, etc.

Image Data Preparation
Data Loading for Deep Learning
Simple CNN Implementation
Advanced CNN Components
Case Study: Crack Detection in Historical Buildings

Popular CNN Architectures
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CNN

Convolutional Neural Networks (CNNs) are specialized neural networks designed for
processing structured grid-like data, such as images

» Inspired by visual cortex organization

* Revolutionized computer vision

SE04
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WHY STANDARD NEURAL NETWORKS
IMAGES

STRUGGLE WITH

Spatial Relationships: Standard networks don't account
for spatial relationships between pixels

Parameter Explosion: A 224x224x3 image would
require over 150,000 weights per neuron

Translation Invariance: Objects can appear anywhere in
an image but have the same meaning

Feature Hierarchy: Images contain low-level features

that compose into higher-level features
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CONVOLUTION

Definition: A mathematical
operation that slides a filter over an
input, performing element-wise

multiplication and summation
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KEY PARAMETERS
IN CONVOLUTION

+ Kernel Size: The dimensions of the filter
» Stride: How many pixels the filter shifts

+ Padding: Adding extra pixels around the
border

- Dilation: Spacing between kernel elements conv_layer = torch.nn.Conv2d(in_channels,
out_channels,

kernel_size,
bias,
padding,
groups)
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EDGE DETECTION

FILTERS IN CNNS

Filters are small matrices that detect
specific patterns in images

 Different filters detect different
features (edges, textures, etc.)

« Weights in filters are learned during
training

EMBOSSING
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PREPARING IMAGES

Need to convert images into proper format for
CNNs

* PyTorch expects 4D tensors: (batch_size,

channels, height, width)

_ _ BATCHES x CHANNELS x HEIGHT x WIDTH
- Data augmentation techniques increase [Nx3x5x4]

training set diversity
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IMAGE TRANSFORMATIONS AND
AUGMENTATION ?

Artificially expanding dataset by applying

transformations 7 e,
. RND CROP HORIZONTAL FLIP

Benefits:

» Prevents overfitting

« Improves model generalization

* Handles varied real-world conditions COLOR JITTER COMBINED

» Addresses class imbalance
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NORMALISED

09



AUGMENTATION
TECHNIQUES

« Geometric: Flips, rotations, scaling, cropping
« Color: Brightness, contrast, saturation adjustments
* Noise: Adding random noise for robustness

* Occlusion: Random erasing to simulate partial obscuring

Combining multiple augmentations:
« Domain-specific augmentations (e.g., for medical images)

* Online vs. offline augmentation

SE04

from torchvision import transforms

train_transforms = transforms.Compose( [

transforms
transforms
transforms

transforms.
.ToTensor( ),
Normalize(][

transforms
transforms

.Resize( (64, )),
.RandomHorizontalFlip(),
.RandomRotation(15),

ColorJitter(brightness=

[

, contrast=
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DATAS ET For CNN projects, proper dataset
O R G A N I SAT I O N organization is crucial. A well-structured

dataset allows for:

e « Data Splitting Strategies

— raw/
— processed/

- project datasets/ * Train/Validation/Test Split
| | train/
|  }— cracks

| '~ no_crack/

L ity  Stratified Splitting: Ensures class

[ ey —— distribution is maintained across splits

L test/

— crack/

L no_crack/

Y  Cross-Validation: For smaller datasets or
when maximum data usage is needed

|
I
| | — crack/
|
|
|
|
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IMAGEFOLDER: SMART EFFICIENT BATCH
DATASET MANAGEMENT PROCESSING

from torchvision.datasets import ImageFolder from torch.utils.data import DatalLoader
from torchvision import transforms

train_loader = Dataloader(
train_dataset,
batch_size=32,

(), shuffle=True,

transforms.Normalize([ e
1) - .

transform = transforms.Compose( [
transforms.Re > ((
transforms.To :

pin_memory=True,
drop_last=False

train_dataset = ImageFolder(root="datasets/crack_detection/train",
transform=transform)

images, labels in train_loader:
print(f"Classes: {train_dataset.classes}") print(f"Batch shape: {images.shape}")
print(f"Class to index: {train_dataset.class_to_1idx}") print(f"Labels: {labels}")

break
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THE HISTORICAL CRACK DATASET: &&= ¢
PRESERVING OUR HERITAGE e
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« First dataset specifically for historical building monitoring sl ";‘.E?v_-.f’; ,.;, Citais bl “r;:;‘ =
* Captures unique patterns in traditional materials

Why It Matters

* Manual inspection is time-consuming, costly, and error-prone

» Historical buildings require specialized monitoring approaches
» Early crack detection can prevent catastrophic structural failure
» Al solutions can scale inspection across multiple heritage sites
Technical Applications

* Automated drone surveys for continuous monitoring

» Mobile applications for conservation specialists

» Detection of early-stage deterioration before visible to human eye

ol
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SIMPLE CNN

CNN Components: o060

* Conv2D class simpleCNN(torch.nn.Module):
def __init__(self, n_
* RelU super(simpleCNN, s ;
il .nn.Conv2c , kernel_size=3,
 Fully connected layers stride=1, padding=1)
caolf F S e * * , )
* Information flow through the network self.fc2 = ' » n_classes)

elf, x):
.functional.relu(self.convl(x))
* * )

» Parameter sharing and local connectivity

b

.functional.relu(self.fcl(x))

c2(0%)
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REGULARISATION
TE C H N IQU ES L1-NORM L2-NORM

« Dropout: Prevents co-adaptation of neurons

« Batch normalization: Stabilises and accelerates

training Minimise

error

+ Weight decay: Penalises large weights

» Early stopping: Prevents overfitting

. /. .\ @l
v/ Bz
Minimise Minimise
penalty error + penalty
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Developed by Visual Geometry Group (Oxford, 2014)
V G G 1 6 Revolutionary simple yet effective design principles:
» Very deep network (16 weight layers)
« Small 3x3 convolution filters throughout

« Consistent doubling of filter count (64—-128-256—-512)

* Max pooling for dimension reduction

INPUT - Convolution + activation
224x224x3 M .
ax pooling
@ Fully connected + activation
= e e
CONV1 CONV2 CONV3 CONV4 CONV 5 POOL FCé6 FC7 FC8
224x224x64  112x112x128 56x56x256 28x28x512 14x14x512 7x7x512 1x1x4096 1x1x4096 1x1x1000
SE04

16



Simplified version of VGG with 3 convolutional blocks
T I N Y V G G * Input = Conv - BatchNorm - ReLU — Pool - (repeat 3x) = FC = Output
Regularization:
* BatchNorm + Dropout (p=0.1) to prevent overfitting
* Progressive Feature Maps: 3—-+16—32—64 channels
» Dimensionality Reduction: Using pooling to reduce spatial dimensions

* Consistent Pattern: Conv = BatchNorm = RelLU — Pool at each level

INPUT

- BatchNorm Convolution + activation
64x64x3

Max pooling
Dropout Fully connected + activation

I 00 ] s 55 | s
CONV 1 CONYV 2 CONYV 3 POOL FC4 FC5
64x64x16 32x32x32 16x16x64 8x8x64 1x1x128 1x1x2
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BEST PRACTICES FOR CNNS

« Start with simple architectures and gradually * Apply proper data augmentation

increase complexity * Monitor training with validation metrics

* Use appropriate regularization techniques * Practice transfer learning when possible
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