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AGENDA
Introduction to Transfer Learning

• Definition and core concepts

Dataset Preparation

• Creating PyTorch dataset classes

• Computing dataset statistics

• Data augmentation for medical images

Baseline Architecture

• U-Net architecture overview

• Implementation of encoder-decoder structure

Loss Functions for Segmentation

• Dice Loss implementation

Transfer Learning with Pre-trained Models

• Introducing EfficientNet architecture

• Adapting pre-trained models for segmentation

Advantages of transfer learning approach
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WHAT IS TRANSFER LEARNING?
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A technique where a model developed for one task is reused as a starting point for a 

model on a second task. It leverages knowledge from pre-trained models instead of 

starting from scratch

It is particularly effective for deep learning models that require massive datasets and 

computational resources

      

      

           

     

        

        

      

       

      

      

      

      



WHEN SHOULD YOU USE TRANSFER 
LEARNING?
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The effectiveness depends on similarity 

between source and target domains

SCENARIO EXAMPLE BENEFIT

Limited training data
Medical imaging with few 
samples

Pre-trained features 
compensate for data scarcity

Similar domains
From natural images to 
satellite imagery

Underlying features (edges, 
textures) transfer well

Time constraints Rapid prototyping needs
Accelerates model 
development cycle

Hardware limitations
Training with limited GPU 
access

Reduces computational 
requirements

Preventing overfitting Small dataset applications
Regularization effect from pre-
trained weights



ISIC 2016 SKIN LESION 
DATASET
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Medical datasets like ISIC are typically smaller than general 

computer vision datasets, making transfer learning particularly 

valuable

• Contains dermoscopic images of skin lesions with expert-

annotated segmentation masks

• 900 training images and 379 test images with corresponding 

binary masks

• Critical for developing automated diagnostic tools for early 

melanoma detection

• Challenging due to varying lesion sizes, shapes, colours, and skin 

types

IMAGE MASK



PYTORCH DATASET
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PyTorch's Dataset class is the 

foundation for data loading

Three key methods:

• __init__

• __len__

• __getitem__

Enables efficient data handling and 

batch processing
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• Synchronized augmentation for images and 

masks

• Careful selection of transformations to 

preserve diagnostic features

• Geometric transforms: rotation, flipping, 

resizing

• Color adjustments: brightness, contrast

DATA AUGMENTATION FOR 
SEGMENTATION
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• Encoder-decoder architecture with skip connections

• Captures both context and localisation information

• Widely used for biomedical image segmentation
U-NET
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• Measures overlap between predicted and 

ground truth masks

• Handles class imbalance better than binary 

cross-entropy

DICE LOSS

DiceLoss = 1 −
2 X ∩ Y

X + Y
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Steps:

1. Select source model

2. Feature extraction

3. Fine-tuning

4. Model adaptation

TRANSFER LEARNING STEPS
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• ResNet (11.7M-60M parameters)

• VGG (138M-144M parameters)

• Inception (6.8M-54M parameters)

• EfficientNet (5.3M-66M parameters)

• MobileNet (4.2M-6.9M parameters)

PRE-TRAINED MODELS
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• Torchvision provides easy access to state-of-the-art 

pre-trained models

• Models include weights trained on ImageNet         

(1.2M+ images, 1000 classes)

• Simple API for loading models with or without          

pre-trained weights

• Supports many architectures: ResNet, EfficientNet, 

VGG, MobileNet, etc.

LOADING PRE-TRAINED 
MODELS
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• Replace standard encoder with pre-trained EfficientNet

• Freeze pre-trained weights to preserve learned features

• Train only decoder layers initiallyEFFICIENT U-NET
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SMART UP BLOCK

• Handles feature map size mismatches between 

encoder and decoder

• Employs bilinear interpolation to resolve size 

discrepancies when needed

• Bilinear interpolation creates smoother transitions 

between pixels compared to nearest-neighbour

• Allows flexibility when working with arbitrary 

encoder architectures



ADVANTAGES OF T-LEARNING
• Reduced training time (5-10x faster)

• Works with limited medical imaging data

• Better performance with challenging cases

• Faster convergence

• Lower computational cost

• Knowledge retention from source domain
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