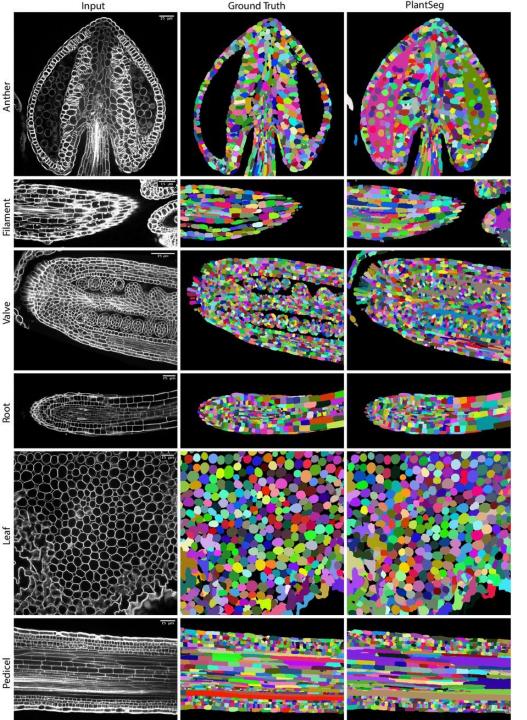
SESSION // 05 TRANSFER LEARNING

MANCHESTER 1824 The University of Manchester

FACULTY OF
SCIENCE AND ENGINEERING
+++

Diego Corona Lopez – AI Technical Specialist



AGENDA

Introduction to Transfer Learning

Definition and core concepts

Dataset Preparation

- Creating PyTorch dataset classes
- Computing dataset statistics
- Data augmentation for medical images

Baseline Architecture

- U-Net architecture overview
- Implementation of encoder-decoder structure

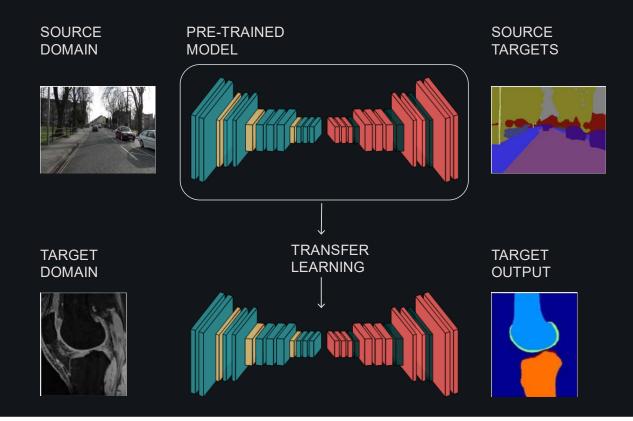
Loss Functions for Segmentation

Dice Loss implementation

Transfer Learning with Pre-trained Models

- Introducing EfficientNet architecture
- Adapting pre-trained models for segmentation

Advantages of transfer learning approach



WHAT IS TRANSFER LEARNING?

A technique where a model developed for one task is reused as a starting point for a model on a second task. It leverages knowledge from pre-trained models instead of starting from scratch

It is particularly effective for deep learning models that require massive datasets and computational resources

03

WHEN SHOULD YOU USE TRANSFER

LEARNING?

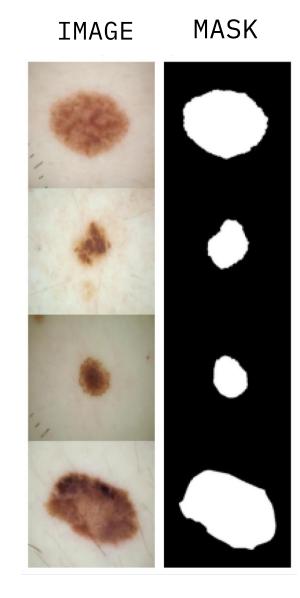
The **effectiveness** depends on similarity between source and target domains

SCENARIO	EXAMPLE	BENEFIT
Limited training data	Medical imaging with few samples	Pre-trained features compensate for data scarcity
Similar domains	From natural images to satellite imagery	Underlying features (edges, textures) transfer well
Time constraints	Rapid prototyping needs	Accelerates model development cycle
Hardware limitations	Training with limited GPU access	Reduces computational requirements
Preventing overfitting	Small dataset applications	Regularization effect from pre- trained weights

ISIC 2016 SKIN LESION DATASET

Medical datasets like ISIC are typically smaller than general computer vision datasets, making transfer learning particularly valuable

- Contains dermoscopic images of skin lesions with expertannotated segmentation masks
- 900 training images and 379 test images with corresponding binary masks
- Critical for developing automated diagnostic tools for early melanoma detection
- Challenging due to varying lesion sizes, shapes, colours, and skin types



PYTORCH DATASET

```
from torch.utils.data import Dataset, DataLoader
class ISICDataset(Dataset):
   def __init__(self, image_dir, mask_dir, img_transform=None, mask_transform=None):
       self.image_dir = Path(image_dir)
       self.mask_dir = Path(mask_dir)
       self.img_transform = img_transform
       self.mask_transform = mask_transform
       self.images = sorted(self.image_dir.glob("*.jpg"))
   def __len__(self):
       return len(self.images)
   def __getitem__(self, idx):
       img_name = self.images[idx]
        image = Image.open(self.image_dir / img_name).convert("RGB")
       mask = Image.open(self.mask_dir / f"{img_name.stem}_segmentation.png").convert("L")
       if self.img_transform:
            image = self.img_transform(image)
       if self.mask_transform:
           mask = self.mask_transform(mask)
       return image, mask
```

PyTorch's Dataset class is the foundation for data loading

Three key methods:

- __init__
- __len__
- __getitem__

Enables efficient data handling and batch processing

DATA AUGMENTATION FOR SEGMENTATION

- Synchronized augmentation for images and masks
- Careful selection of transformations to preserve diagnostic features
- Geometric transforms: rotation, flipping, resizing
- Color adjustments: brightness, contrast

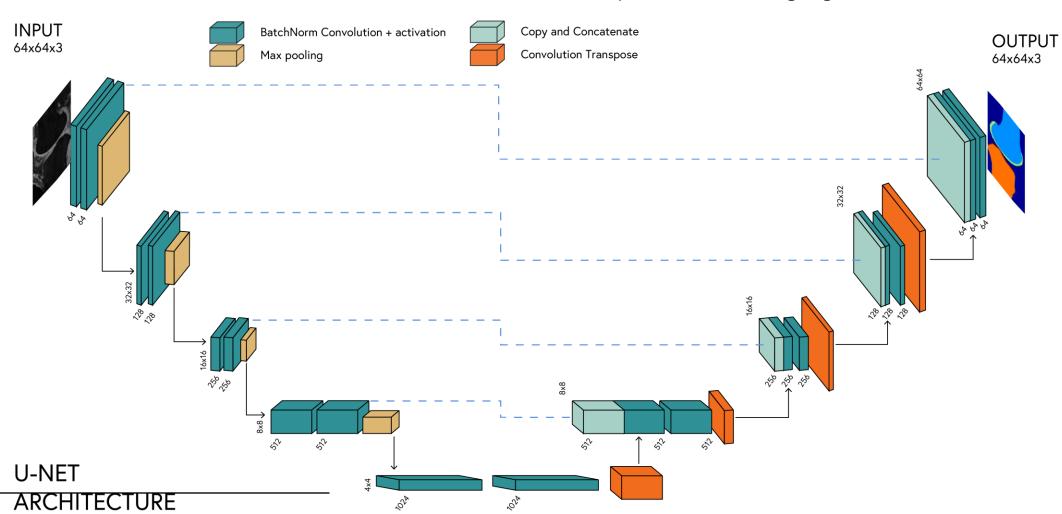
```
import albumentations as A
from albumentations.pytorch import ToTensorV2

train_img_ts = A.Compose([
    A.Resize(64, 64),
    A.HorizontalFlip(p=0.5),
    A.VerticalFlip(p=0.5),
    A.Rotate(limit=10, p=0.5),
    A.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1, p=0.5),
    A.Normalize(mean=mean, std=std, p=1.0),
    ToTensorV2()
])
```

 $_{07}$

U-NET

- Encoder-decoder architecture with skip connections
- Captures both context and localisation information
- Widely used for biomedical **image segmentation**



DICE LOSS

- Measures overlap between predicted and ground truth masks
- Handles class imbalance better than binary cross-entropy

$$DiceLoss = 1 - \frac{2|X \cap Y|}{|X| + |Y|}$$

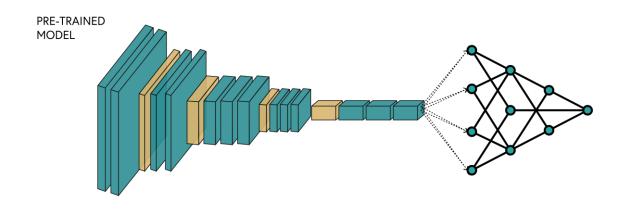
```
class DiceLoss(torch.nn.Module):
    def __init__(self, smooth=1.0):
        super().__init__()
        self.smooth = smooth

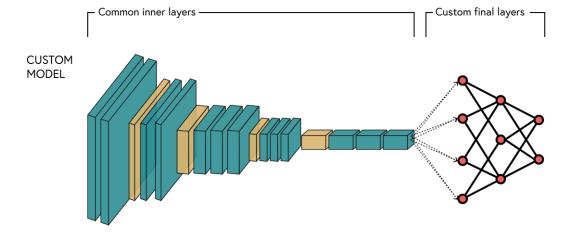
def forward(self, y_pred, y_true):
        y_pred = y_pred.view(-1)
        y_true = y_true.view(-1).float()
        intersection = (y_pred * y_true).sum()
        union = y_pred.sum() + y_true.sum()
        dice = (2. * intersection + self.smooth) / (union + self.smooth)
        return torch.clamp(1 - dice, 0.0, 1.0)
```


TRANSFER LEARNING STEPS

Steps:

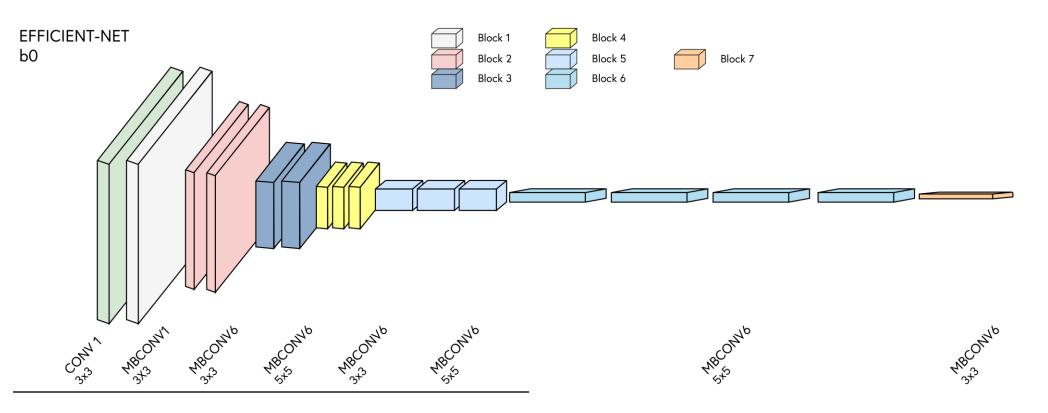
- 1. Select source model
- 2. Feature extraction
- 3. Fine-tuning
- 4. Model adaptation





PRE-TRAINED MODELS

- ResNet (11.7M-60M parameters)
- VGG (138M-144M parameters)
- Inception (6.8M-54M parameters)
- EfficientNet (5.3M-66M parameters)
- MobileNet (4.2M-6.9M parameters)



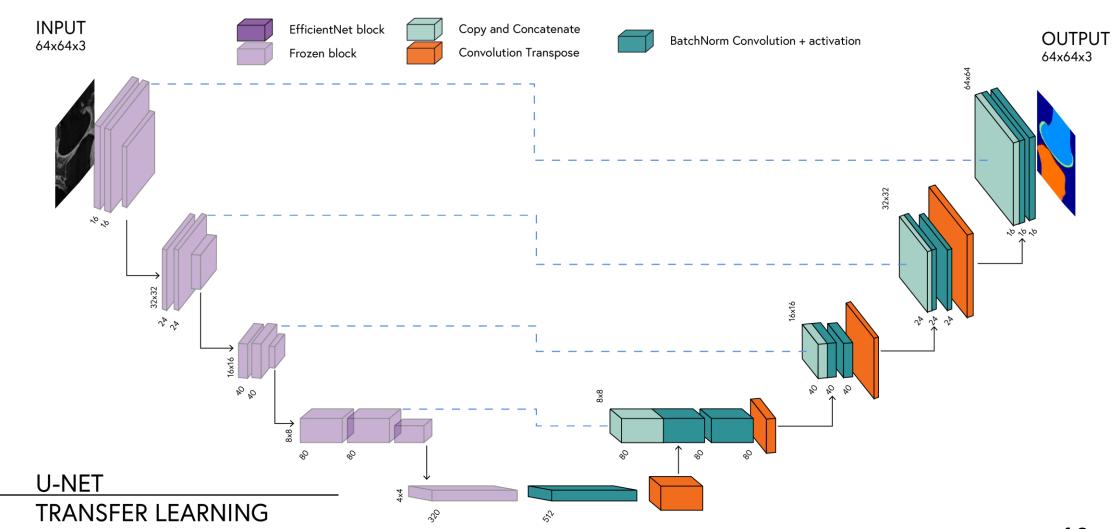
LOADING PRE-TRAINED MODELS

- Torchvision provides easy access to state-of-the-art pre-trained models
- Models include weights trained on ImageNet (1.2M+ images, 1000 classes)
- Simple API for loading models with or without pre-trained weights
- Supports many architectures: ResNet, EfficientNet, VGG, MobileNet, etc.

```
import torchvision.models as models
resnet50 = models.resnet50(weights='IMAGENET1K_V1')
efficientnet = models.efficientnet_b0(weights='IMAGENET1K_V2')
vgg16 = models.vgg16(weights=None)
features = efficientnet.features
print(dir(models))
print(models.EfficientNet_B0_Weights.IMAGENET1K_V1.meta)
```

EFFICIENT U-NET

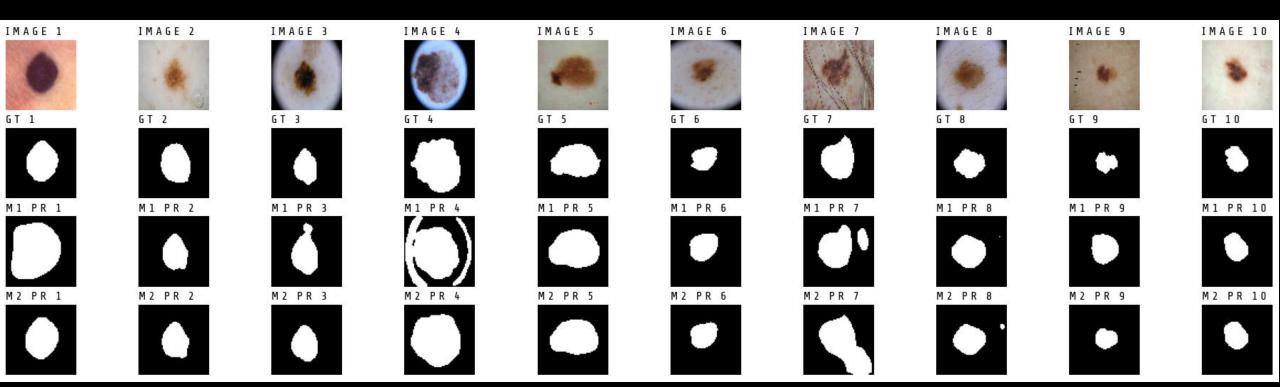
- **Replace** standard encoder with pre-trained EfficientNet
- Freeze pre-trained weights to preserve learned features
- Train **only decoder** layers initially



SMART UP BLOCK

- Handles feature map size mismatches between encoder and decoder
- Employs bilinear interpolation to resolve size discrepancies when needed
- Bilinear interpolation creates smoother transitions between pixels compared to nearest-neighbour
- Allows flexibility when working with arbitrary encoder architectures

```
class SmartUp(torch.nn.Module):
    def __init__(self, in_channels, skip_channels, out_channels):
       super().__init__()
       self.up = torch.nn.ConvTranspose2d(in_channels,
                                          skip channels,
                                          kernel_size=2, stride=2)
       self.conv = DoubleConv(skip_channels * 2, out_channels)
   def forward(self, x1, x2):
       x1 = self.up(x1) # Initial upsampling via transposed convolution
       if x1.size()[2:] != x2.size()[2:]:
           x1 = torch.nn.functional.interpolate(
               x1,
               size=x2.size()[2:], # Match skip connection dimensions
               mode='bilinear',  # Smoother than nearest neighbor
               align_corners=False # Consistent behavior with odd dimensions
       x = torch.cat([x2, x1], dim=1)
       return self.conv(x) # Apply convolution to fused features
```



ADVANTAGES OF T-LEARNING

- Reduced training time (5-10x faster)
- Works with limited medical imaging data
- Better performance with challenging cases

- Faster convergence
- Lower computational cost
- Knowledge retention from source domain